Maximality of the Microstates Free Entropy for R-diagonal Elements

نویسنده

  • ALEXANDRU NICA
چکیده

An non-commutative non-self adjoint random variable z is called R-diagonal, if its ∗-distribution is invariant under multiplication by free unitaries: if a unitary w is ∗-free from z, then the ∗-distribution of z is the same as that of wz. Using Voiculescu’s microstates definition of free entropy, we show that the R-diagonal elements are characterized as having the largest free entropy among all variables y with a fixed distribution of y∗y. More generally, let Z be a d×d matrix whose entries are non-commutative random variablesXij , 1 ≤ i, j ≤ d. Then the free entropy of the family {Xij}ij of the entries of Z is maximal among all Z with a fixed distribution of Z∗Z, if and only if Z is R-diagonal and is ∗-free from the algebra of scalar d× d matrices. The results of this paper are analogous to the results of our paper [3], where we considered the same problems in the framework of the non-microstates definition of entropy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Free Entropy Dimension of Some L∞[0, 1]-circular Operators

We find the microstates free entropy dimension of a large class of L∞[0, 1]–circular operators, in the presence of a generator of the diagonal subalgebra.

متن کامل

Rectangular random matrices, related free entropy and free Fisher's information

We prove that independent rectangular random matrices, when embedded in a space of larger square matrices, are asymptotically free with amalgamation over a commutative finite dimensional subalgebra D (under an hypothesis of unitary invariance). Then we consider elements of a finite von Neumann algebra containing D, which have kernel and range projection in D. We associate them a free entropy wi...

متن کامل

2 00 5 Rectangular Random Matrices , Related Free Entropy and Free Fisher ’ S Information

We prove that independent rectangular random matrices, when embedded in a space of larger square matrices, are asymptotically free with amalgamation over a commutative finite dimensional subalgebra D (under an hypothesis of unitary invariance). Then we consider elements of a finite von Neumann algebra containing D, which have kernel and range projection in D. We associate them a free entropy wi...

متن کامل

Free Entropy Dimension in Amalgamated Free Products

We calculate the microstates free entropy dimension of natural generators in an amalgamated free product of certain von Neumann algebras, with amalgamation over a hyperfinite subalgebra. In particular, some ‘exotic’ Popa algebra generators of free group factors are shown to have the expected free entropy dimension. We also show that microstates and non–microstates free entropy dimension agree f...

متن کامل

A Note about Proving Non-γ under a Finite Non-microstates Free Fisher Information Assumption

We prove that if X1, ..., Xn(n ≥ 2) are selfadjoints in a W ∗-probability space with finite nonmicrostates free Fisher information, then the von Neumann algebra W ∗(X1, ..., Xn) they generate doesn’t have property Γ (especially is not amenable). This is an analog of a well-known result of Voiculescu for microstates free entropy. We also prove factoriality under finite non-microstates entropy.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999